D401是在特殊大孔结构的苯乙烯-二乙烯苯共聚体上带有弱酸性硫脲基(-CH2-S-C-NHNH2)的螯合树脂。该产品能在很大范围内,甚至从高浓度的溶液中固定、鏊合一种或几种特定的阳离子。主要用于游离态汞和贵重金属的分离、提纯、具有颗粒均匀,机械强度好等特点。
吸附铂金钯金树脂在废水工业中的应用工艺
离子交换树脂是一种在交联聚合物结构中含有离子交换基团的功能高分子材料。离子交换树脂不溶于酸、碱溶液及各种有机溶剂,结构上属于既不溶解、也不熔融的多孔性固体高分子物质。
处理含铜废水
工业排放废水如有色冶炼、电镀、化工、印染等行业的废水中常含有铜。利用离子交换树脂可以有效地除去废水中的Cu2+,以达到高度净化,并有利于资源的再生。选用多种大孔强酸型离子交换树脂用于吸附浓集含有机物废水中的铜离子。通过测定各种树脂对铜离子的去除率、不同铜离子浓度和溶液pH值对去除率的影响,以及各树脂再生性能的比较,表明"争光"树脂、"强酸1号"树脂与PK208树脂有为突出的性能,效果明显优于其它几种树脂;其离子交换性能稳定,有良好的再生性。同时,对Cu2+的吸附去除能力完全可达到要求,净化后的水中Cu2+浓度低于0.1mg/L,可用于含铜废水的净化处理。
离子交换树脂
处理含汞废水
含汞废水是危害大的工业废水之一,离子交换树脂法适用于处理浓度低而排放量大、含有毒金属的废水。配合硫化钠明矾化学凝聚沉淀法作为二级处理,对低浓度含汞废水可达到排放标准。
明矾化学凝聚沉淀法处理红汞生产中产生的含汞废水。由于含汞废水成分复杂,存在多种形态的汞化合物(有机汞、无机汞)、金属汞以及其他有机物和离子,对酸化pH值和硫化钠量不易控制,会使硫化汞形成整合物溶解,处理后废水中汞浓度仍达0.05~0.5mg/L,很难达到排放标准。为了探索技术上先进、经济上合理的治理途径,通过多次实验,并选用了离子交换树脂法。经过近两年来的运行表明:(1)用树脂交换法除汞作为化学法的二级处理系统,能保证达到排放标准,且能实现封闭循环、连续稳定的运行,排放的废水可作为冷却水加以回用。(2)提高了生产能力,单位产品的成本降低,节约了治理费用。(3)应用树脂交换法还能对废水起到脱色作用,处理的水清晰透明。失效后的树脂不再回收,作为汞废渣回收汞,防止了二次污染。因此,应用离子交换法处理低浓度含汞废水,有明显的社会效益和经济效益。
离子交换树脂
认为低价钼酸聚合物主要以六聚合物与树脂交换,而钼酸盐以四聚合物被吸附。且凝胶型树脂的孔径很小,故低价钼酸聚合物在树脂中的扩散阻力较大,导致交换速度较低。尽管低价钼酸聚合物在树脂上的吸附速度较慢,但钼盐占据着树脂上的交换位置,与树脂键合得更牢固,比吸附有钼酸盐的树脂更难解吸。只有用氧化剂氧化后才能较快地解吸。由于在酸性条件下,而低价钼酸聚合物不仅不易与树脂进行交换,而且洗脱也比较麻烦。因此,应先除去待处理的含钼废水中的还原剂,其pH值好调整到大于7。
当含钼溶液的pH>6.1时,钼在溶液中主要以MoO4广泛存在,并与氯型树脂进行交换,当pH<3.5时,钼主要以更高聚合度的聚钼酸盐离子存在,并与树脂进行交换。即使是高价钼酸聚合物,在pH<3的条件下,树脂吸附钼的量和速度都大大降低。
除上述之外,离子交换树脂还在含锌、含铀、含镉废水等含有重金属离子废水分离和提纯金属方面有着广泛的用途。应用强酸性阳离子交换树脂去除焦化废水中的氨氮,系统考察了强酸性阳离子交换树脂对高浓度焦化废水中氨氮的吸附行为。实验表明,强酸性阳离子交换树脂对高浓度焦化废水中氨氮具有吸附平衡快、吸附能力强的特点;应用树脂脱除焦化废水中氨氮,废水流速在0.139~1.667mL/s范围时,对废水中氨氮吸附量和吸附率没有明显影响。树脂失效后,经再生可反复使用。同时也对其吸附去除氨氮的机理进行了分析与阐述。
离子交换树脂
离子交换树脂法处理废水是一种较为有效的处理方法,已有不少经验可以借鉴。正如一项有用的治理技术总存在其适用范围,离子交换法也有不足,如一次性投资高,操作要求及管理严格,有的还存在再生问题、树脂的中毒和老化问题等。但有的问题已有相应的解决办法,提高也是可以做到的。充分发挥离子交换法的回收功能,不仅能保护环境,而且在经济效益方面极有优势。因此,离子交换树脂在水处理领域具有广阔的发展空间,应加以重视。
离子交换树脂在水处理领域已经得到了广泛应用,文章介绍了离子交换树脂以及其在废水处理中的一些应用实例。比如其在含汞废水,含铜废水,有机废水等的处理中的应用。离子交换树脂法处理废水具有可深度净化、处理效率高和能实现多种金属综合回收的优点,在水处理领域必将得到更为深入的应用。